• English
  • Products

    Protocol Exercisers & Analyzers

    • Storage
    • PCIe Protocol Analyzer
    • UFS 4.0 Protocol Analyzer
    • UFS 3.0 Protocol Analyzer
    • SoC based UFS Tester
    • eMMC,SD,SDIO Protocol Analyzer
    • SD, eMMC AC/DC Tester
    • SoC based eMMC Tester
    • QSPI Protocol Exerciser & Analyzer
    • UHS II Protocol Exerciser & Analyzer
    • Mobile
    • I3C Protocol Exerciser & Analyzer
    • RFFE Protocol Exerciser & Analyzer
    • Automotive
    • 100Base-T1 Automotive Ethernet Protocol Analyzer

    Protocol Exercisers & Analyzers

    • Computer
    • PCIe Protocol Analyzer
    • UART Protocol Exerciser & Analyzer
    • SPMI Protocol Exerciser & Analyzer
    • Others
    • I2C/SPI Protocol Exerciser & Analyzer
    • PMBus Protocol Exerciser & Analyzer
    • JTAG Protocol Exerciser & Analyzer
    • SMBus Protocol Exerciser & Analyzer
    • MDIO Protocol Exerciser & Analyzer
    • 100G 802.3_2015 BERT & Analyzer

    Logic Analyser

    • Discovery series for Embedded Interface

    Oscilloscope Based Software

    • Memory
    • UFS 3.0
    • QSPI
    • ONFI v4
    • eMMC 5.1/5.0/4.51
    • SD
    • Automotive
    • 10BaseT1S
    • 100Base T1
    • FlexRay
    • Others
    • I2C
    • SPI
    • UART
    • I2S
    • JTAG
    • SMBus

    Oscilloscope oftware

    • Computer
    • USB-PD
    • USB 2.0
    • USB 3.0
    • USB 3.1
    • STEPg1
    • PCIe
    • SPMI
    • HDMI
    • MHL
    • ESPI
    • Mobile
    • I3C EV
    • I3C PD
    • UniPRO
    • LLI
    • RFFE
    • HSIC
    • DigRF v4
    • SSIC
  • Resources

    Datasheets

    Application Notes

    Videos

    • Protocol Analyzer
    • Logic Analyzer

    blogs

    Forum

    Prodigy Partner Central

    • Login
  • Company

    Overview

    • About Us
    • Leadership Team

    Distributors

    • I2C
    • I3C
    • Other Protocols

    News

    • News
    • Automotive

    events

    • Webinar

    Newsletters

    • Automotive
  • Career
  • Support
What can we help you find?
  • Products

    Protocol Exercisers & Analyzers

    • Storage
    • PCIe Protocol Analyzer
    • UFS 4.0 Protocol Analyzer
    • UFS 3.0 Protocol Analyzer
    • SoC based UFS Tester
    • eMMC,SD,SDIO Protocol Analyzer
    • SD, eMMC AC/DC Tester
    • SoC based eMMC Tester
    • QSPI Protocol Exerciser & Analyzer
    • UHS II Protocol Exerciser & Analyzer
    • Mobile
    • I3C Protocol Exerciser & Analyzer
    • RFFE Protocol Exerciser & Analyzer
    • Automotive
    • 100Base-T1 Automotive Ethernet Protocol Analyzer

    Protocol Exercisers & Analyzers

    • Computer
    • PCIe Protocol Analyzer
    • UART Protocol Exerciser & Analyzer
    • SPMI Protocol Exerciser & Analyzer
    • Others
    • I2C/SPI Protocol Exerciser & Analyzer
    • PMBus Protocol Exerciser & Analyzer
    • JTAG Protocol Exerciser & Analyzer
    • SMBus Protocol Exerciser & Analyzer
    • MDIO Protocol Exerciser & Analyzer
    • 100G 802.3_2015 BERT & Analyzer

    Logic Analyser

    • Discovery series for Embedded Interface

    Oscilloscope Based Software

    • Memory
    • UFS 3.0
    • QSPI
    • ONFI v4
    • eMMC 5.1/5.0/4.51
    • SD
    • Automotive
    • 10BaseT1S
    • 100Base T1
    • FlexRay
    • Others
    • I2C
    • SPI
    • UART
    • I2S
    • JTAG
    • SMBus

    Oscilloscope oftware

    • Computer
    • USB-PD
    • USB 2.0
    • USB 3.0
    • USB 3.1
    • STEPg1
    • PCIe
    • SPMI
    • HDMI
    • MHL
    • ESPI
    • Mobile
    • I3C EV
    • I3C PD
    • UniPRO
    • LLI
    • RFFE
    • HSIC
    • DigRF v4
    • SSIC
  • Resources

    Datasheets

    Application Notes

    Videos

    • Protocol Analyzer
    • Logic Analyzer

    blogs

    Forum

    Prodigy Partner Central

    • Login
  • Company

    Overview

    • About Us
    • Leadership Team

    Distributors

    • I2C
    • I3C
    • Other Protocols

    News

    • News
    • Automotive

    events

    • Webinar

    Newsletters

    • Automotive
  • Career
  • Support
  • English
Intro to Logic Analyzer

INTRODUCTION TO LOGIC ANALYZER

A logic analyzer is an electronic instrument that captures and displays multiple signals from a digital system or a digital circuit. It is an excellent tool for verifying and debugging digital designs. A logic analyzer may convert the captured data into timing diagrams, protocol decodes, state machine traces, and assembly language. For debugging elusive, intermittent problems, some logic analyzers can detect glitches, as well as setup-and-hold time violations. During software/hardware integration, logic analyzers trace the execution of the embedded software and analyze the efficiency of the program’s execution. Some logic analyzers correlate the source code with specific hardware activities in your design.

A logic analyzer is used when we need to

  • Debug and verify digital system operation.
  • Trace and correlate many digital signals simultaneously.
  • Detect and analyze timing violations and transients on buses.
  • Trace embedded software execution.

THE LOGIC ANALYZER

Debugging microprocessor-based designs required more inputs than what conventional analog oscilloscopes could offer. A typical logic analyzer has anywhere from 8 to 136 channels, and they are particularly useful for looking at time relationships or data on a bus. For example, a microprocessor address, data, or control bus. They can decode the information on microprocessor buses and display it in a meaningful form.

LOGIC ANALYZER

A logic analyzer measures and analyzes signals differently than an oscilloscope. The logic analyzer does not measure analog details. Instead, it detects logic threshold levels. When we connect a logic analyzer to a digital circuit, we are only concerned with the logic states of the signal, i.e., a logic analyzer looks for just two logic levels. When the input is above the threshold voltage (V) the level is said to be a “high” or “1”; conversely, the level below Vth is a “low” or “0”. When a  logic analyzer samples input it stores a “1” or a “0” depending on the level of the signal relative to the voltage threshold.

HISTORY OF LOGIC ANALYZER

Circuits started becoming smaller after the invention of the Integrated circuit (IC) in the early 1960s. While technology further developed over the years, there was an increase in the computational power and speed of digital circuits. Due to this reason, testing and debugging electronic devices proved to be difficult as thousands and millions of transistors could be packed inside a single chip which reduced their overall size and increased the number of pins. Hence, logic analyzers proved to be an important tool in analyzing electronic circuits due to their ability to time correlate a large number of signals on a single display which made it easier to view data movement and processing within many embedded systems or the peripherals of small computer systems.

Hewlett Packard announced the invention of the first logic analyzer in 1973 which was capable of measuring and displaying logic states across a set of LEDs. The HP 5000A was the first commercially available logic analyzer and had two channels.

TYPES OF LOGIC ANALYZERS

There are three types of logic analyzers: modular logic analyzers, portable logic analyzers, and PC-based logic analyzers.

Modular Logic Analyzers: Modular logic analyzers are the standard form seen in labs that have a chassis and multiple modules. These are one of the more expensive and provide the highest level of functionality to the user.

 

 

Modular Logic Analyzer

 

Figure 2. Modular Logic Analyzer

 

Portable Logic Analyzer: Portable logic analyzers are more portable than modular logic analyzers and provide all the functions that are integrated into a single module with a screen.

 

Portable Logic Analyzer

 

Figure 3. Portable Logic Analyzer

 

PC-based Logic Analyzer: PC-based logic analyzers are compact and they directly interface to a computer via an ethernet or a USB cable. The captured information is displayed to the user via the PC’s display. PC-based logic analyzers are the least expensive but are limited in terms of power compared to modular and portable logic analyzers.

Logic Analyzer From Prodigy Technovations

Figure 4. PC-Based Logic Analyzer From Prodigy Technovations

 

ABOUT AUTHOR

Raghavendra Bhat is an Application Engineer at Prodigy Technovations. He graduated from NMAM Institute of Technology in 2020 with a bachelor’s degree in Electronics & Communication Engineering. His area of interest includes Embedded systems, Digital System Design, and Automotive Electronics.

For more information reach out to us at (contact@prodigytechno.com)

  • Previous SPMI Protocol – System Power Management Interface Protocol
  • Next Embedded Debug Time Challenge

Leave a Reply Cancel reply

You must be logged in to post a comment.

Recent Posts

  • Sideband Signal Analysis for PCIe Interfaces Using PGY-PCIeLP-SBA
  • PCIe Sideband signal operation during lower Power entry and exit
  • PCIe Side Band Signals functionalities at power on state of PCIe interface
  • UFS 4.0 in Automotive: Powering Next-Generation Vehicles
  • Understanding Clock Stretching in I²C Communication and How PGY-I2C-EX-PD Simplifies Debugging

Recent Comments

No comments to show.

Archives

  • May 2025
  • April 2025
  • March 2025
  • October 2024
  • August 2024
  • July 2024
  • February 2024
  • December 2023
  • June 2023
  • May 2023
  • January 2021
  • November 2020
  • April 2020
  • September 2019

Categories

  • All products
  • Automotive
  • Datasheet
  • Device
  • Differences
  • eMMC
  • I2C
  • I3C
  • Logic Analyzer
  • Memory
  • news
  • PCIe
  • Protocols
  • SPI
  • UFS
  • Uncategorized
  • XSPI Protocol Analyzer

Search

Categories

  • All products
  • Automotive
  • Datasheet
  • Device
  • Differences
  • eMMC
  • I2C
  • I3C
  • Logic Analyzer
  • Memory
  • news
  • PCIe
  • Protocols
  • SPI
  • UFS
  • Uncategorized
  • XSPI Protocol Analyzer

Tags

Clock Stretching DDR5 I2C I3C I3C Protocol Logic Analyzer Passed PCIe UFS UFS 4.0 Webinar

Our team represents a talented, experienced, and highly specialized group of development engineers, sales and marketing specialists. Through many years of direct engineering involvement with our customers, our personnel have developed expertise in wide range of technologies in serial data.

Follow us on

Linkedin Twitter Facebook Youtube

Quick links

  • Products
  • Resources
  • Company
  • Career
  • Support

Contact info

Prodigy Technovations Pvt Ltd

#294, 3rd Floor, 7th Cross, 7th Main, BTM II Stage,Bangalore – 560 076 | India

+91 80 4212 6100

contact@prodigytechno.com

© 2023 Prodigy Technovations. All Rights Reserved

Request Quote
Request Demo

UFS 4.0

 

PGY-UFS4.0-PA, UFS Protocol Analyzer is the industry-first working and tested UFS4.0 Protocol Analyzer. It offers protocol data capture and debugging of data across MPHY, UniPro, and UFS protocol layers…

 

X
  • English